<12回連載 ショートレクチャー>

若手技術者のための研削工学 (第8回) 寸法の創成過程と加工精度

奥山繁樹(防衛大名誉教授)

1. はじめに

機械部品の加工に研削が選ばれる主な理由は,切 削が難しい材料でも能率的かつ高精度・高品質に仕上 げることができるところにあろう.研削熱が仕上面の品 質に及ぼす影響については前回のレクチャーで触れた が,機械部品の形状・寸法精度もまた,その品質を左 右する重要な要因である.

円筒外面研削においては、工作物の剛性が低いこと が多く、たわみが発生しやすいうえに、研削システム全 体の弾性変形も加わり、寸法の創成過程に大きな影響 を及ぼす.このことに着目した岡村らは、いゆる「かつぎ 理論」を提唱して注目された.その後、工作物の熱変形 と、これによる切り過ぎに着目した研究が進み、寸法の 創成過程が明らかになってきた.

今回のレクチャーでは、寸法の創成過程に影響を及 ぼす因子を概観することから始める.この中で、砥石と 工作物の接触域で発生する「工作物の局部的熱変形」 は筆者が見いだした因子であり、一般の認識が低いと 思われるのでやや詳しく説明する.つぎに、円筒プラン ジ研削における寸法の創成過程について考察した上 で、寸法精度と形状精度の向上策について考える.

2. 寸法の創成に影響を及ぼす因子

寸法の創成に影響を及ぼす因子は、切り残しの原因 になる因子と、切り過ぎの原因になる因子の二つに大 別できる.前者には、以下の四つが考えられる.

(1) 砥石の摩耗による半径減: d₀

一般砥粒砥石の場合には、加工中に比較的大きな 摩耗(砥石の半径減)が生じ、切り残しに繋がる.研削 によって除去した工作物体積と砥石損耗体積の比は研 削比と呼ばれる.例えば、焼入れ鋼をA系砥石で研削 したときの研削比は5~50程度であるが、cBNホイール を用いるとその値は数千に達する.このため, cBN ホイ ールで鋼を短時間加工するような場合には, 摩耗によ る半径減を考慮しなくて良いこともある.

(2) 機械系全体の弾性変位による切り残し: d1

砥石から研削盤本体を介して工作物に至る機械系 全体の静剛性を K_m, 垂直研削抵抗(または, 法線研削 抵抗)を F_nとすると, 弾性変位による切り残し d₁ は F_n /K_m で与えられる. なお, 砥石の切込み送りにリニアモ ータを用いている場合には, サーボ剛性 K_S(外力に抗 して位置の偏差をゼロにしようとする力と位置偏差との 比)に応じた切り残しF_n/K_Sを生ずるが, ここでは d₁に含 まれるものとする.

(3) 砥石と工作物の接触変位による切り残し: d2

砥石も工作物も弾性体であり、しかも砥粒は砥石表面に弾性的に支持されているから、砥石と工作物の接触剛性 K_{con} に起因する切り残し $d_2=F_n/K_{con}$ を生ずる. ただし、 K_{con} は一定値ではなく、 F_n が大きくなると急増する、つまり強い非線形性を有することに注意する必要がある.

(4) 砥粒切れ刃の塑性的上滑りによる切り残し: d3

第1回目のレクチャーで述べたように、切れ刃と工作物が接触しても、工作物表面を掘り起こすだけで、すぐには切りくずを出さない、切りくずを出す直前における切れ刃と工作物の干渉深さが d₃ である.

一方,切り過ぎに関わる因子には,以下の三つが考 えられる.

(5) 砥石と工作物の平均温度上昇に起因する熱膨張(両者の半径増):δ₁

例えば, 鋼の線膨張係数は 11×10⁻⁶ 程度であるから, ¢100mm の工作物が 10℃上昇すると, 外径は約 11µm 増加する. つまり, 冷却後の工作物は 11µm の寸法不 足が生ずることになる.

図1 ワンパス上向き研削における工作物表層 の温度上昇

図2 工作物表層の無次元熱変形

(6) 矩形工作物の曲げ変形:δ₂

前回のレクチャーで紹介した,研削熱による矩形工 作物の曲げ変形に起因する切り過ぎである.この因子 は,仕上面の形状精度にも関わる重要な因子である. (7) 工作物の局部的熱変形:δ₃

砥石と工作物の接触域で工作物表層は局部的に熱 膨張するため、その分過剰に削り取られるが、その詳細 については後述する.

これら七つの因子は,影響の大きさと方向がある程 度予測できるから,誤差の補正は不可能ではない.一 方,研削盤の振動や切込み送りの乱れなどは影響の 仕方が不確かであり,補正は難しい.

3. 砥石と工作物の接触域における局部的熱変形

図1は、ワンパス上向き研削における工作物表層の 温度分布を、筆者らが解析した結果である.ここで、L: 砥石と工作物の無次元接触長さ(=vl/4K.v:工作物 速度、l:砥石と工作物の接触長さ、K:工作物の温度伝

導率), Z:無次元深さ(=vz/2K, z:表面からの深さ), T:無次元温度上昇[= $\theta \times \pi kvBl/(2KR_wF_tV)$.ここで, θ :工作物表層の温度上昇, k:工作物の熱伝導率, B:工作物幅, R_w :熱の工作物への流入割合, F_t :接線 研削抵抗, V:砥石周速度]である.6回目のレクチャー で紹介した工作物表面温度の測定例と比べると,熱源 の強度分布をくさび形(三角形)と仮定した方がより妥 当と言える.

工作物表層の温度分布がわかれば、これを深さ方向 に積分して線膨張係数 α をかければ、砥石と工作物の 接触域の各位置(X/L)における、垂直方向の熱変形量 $\delta_{(XL)}$ が得られる. 図 2 は、図中に付記した無次元熱変 形 Δ_h と位置 X/L との関係を示している. 熱変形は熱源 の後端で最大値 $\delta_{(X/L=-1.0)}$ に達するので、これを h_w' と 書くと、次の関係が得られる.

$$h_{w}' = \alpha \, \frac{R_{w} F_{t} V K}{B k v} \tag{1}$$

さらに、工作物表層は水平面内にも熱膨張しようとするが、その下層部によって変形が拘束されるから、ポアソン比 ν の影響を受け、実際の上方への熱変形 h_w は上式の $(1+\nu)/(1-\nu)$ 倍になる.

$$h_{w} = \frac{1+\nu}{1-\nu} h_{w}' = 1.8 h_{w}'$$
 (3)

図3は、筆者が求めた*h*wの計算値と測定値を比較したもので、両者はほぼ一致している.*h*wの値は、寸法の 創成過程を考える上で無視できない大きさであるので、 これを「局部的熱変形」と名付けた.

図4は、局部的熱変形を考慮した砥石と工作物の接触状態の模式図である(簡単のため、本図では局部的熱変形以外の因子を無視している).工作物は、接触

図4 局部的熱変形を考慮した,砥石と工作物 の接触状態の模式図

域内で次第に盛り上がりながら砥石に削り取られるから, 研削後の冷却に伴って収縮し, h_w だけオーバカットさ れることになる. なお後述のように, 局部的熱変形は仕 上面の形状精度に影響を及ぼす因子でもある.

4. 寸法の創成過程と精度

4.1 寸法の創成過程

図 5 は円筒プランジ研削において, 砥石を一定速度 V_p で切込んで, 所定の寸法を得ようとした時の経過時 間 τ と工作物半径減(寸法創成量)との関係を中島ら¹⁾ が調べた結果である. この図では, 切り過ぎに関わる因 子が全て無視されており問題があるが, 寸法の創成過 程を理解する上で役立つので引用した.

砥粒切れ刃の上滑りのため,砥石が工作物に接触し た瞬間には工作物の除去は始まらず,ある時間 τ_e 遅れ る.その後,過渡状態が終了する時間 τ_t までの間は, 工作物半径の減少速度 $dS_R/d\tau$ は砥石の切込み速度 V_p よりも小さいが,時間とともに V_p に近づき,定常状態 では $dS_R/d\tau = V_p$ となる.定常状態でのある瞬間Nでは, 寸法の創成量 S_R は砥石の全切込み深さ $V_p\tau$ よりも $(d_0+d_1+d_2+d_3)$ だけ小さい.

点 N'で砥石の切込みを中止しても,工作物の除去 作用は継続される.この状態をスパークアウト研削と言 い,工作物半径は次第に減少するが,全切込み $V_p\tau$ に 一致することはない.つまり,砥粒の最終的な上滑り時 に発生する垂直研削抵抗 F_n に対応した切り残し d_f と最 終的な砥石の摩耗量の和だけが切り残される.

実際には、図 5 に示した寸法の創成過程に、熱による切り過ぎの影響が加わるためにさらに複雑で、条件によっては全切り込み量以上に加工されることもある.

なお、平面プランジ研削における寸法の創成過程は 断続的になるものの、本図に類似した経過をたどるから、 上記の考え方は平面プランジ研削にも適用できる.

4.2 寸法精度の向上策

図 5 円筒プランジ研削における経過時間と工作 物半径減(寸法創成量)との関係(WA60PV, V=1800m/s,切込み速度 V_p=1.14µm/s)

上述のように寸法精度に影響を及ぼす因子は多く, これらの全てを把握してコントロールすることは難しい. とはいえ図 5 によれば,スパークアウト研削を丹念に行 うことで,砥石損耗以外の因子の影響を最小限にでき る.この間,研削液を適切に供給すれば熱変形の影響 も抑制できよう.

製造現場では,研削終了直前における砥石の作用 面レベルを把握することが重要である.平面研削にお いては,テーブルの近くに設置したドレッサでドレッシン グを行い,そのときの砥石作用面レベルを基準に最終 的な切込み量を決めることが行われる.また,砥石頭に 接触あるいは非接触の位置センサを取り付け,あらかじ め準備した基準面と被削面とのレベル差を測定して, 最終切込み量を決定することも行われる.

一方,円筒研削においては研削中あるいは研削を 中断して工作物径を測定し,目標値に追い込むことが 行われる.いずれにしても工作物寸法を機上測定する 場合には,その温度が規定された値でかつ安定してい る必要がある.

5. 形状精度(平面度)の向上策

研削加工は,強制切込み加工の一種であり,基本的 に運動転写によって仕上面が創成される.したがって, 工作物の送り運動精度が十分高いことが基本であるが, 運動精度に関する議論は別途行うことにして,ここでは 一般の精密平面研削盤でより高精度に平面を創成しよ うとする場合の課題と対策について述べる.

第2章で寸法の創成過程に影響を及ぼす因子を列

挙したが,各因子の影響の 度合いが工作物の位置によ って変わらなければ,平面 度を悪化させることはない.

しかし,局部的熱変形の 量は工作物表層での変形の 拘束の度合いに依存するか ら,工作物の自由端に近づ くほど熱変形量は減少する. 結果,板状工作物の端面を プランジ研削すると,図6に

図 6 板状工作物の幅方向の 仕上面形状 (A46M7V, S45C 焼 入れ材,幅 B:8mm, t=14µm, V= 1800m/min, v=10m/min)

示すように凹状に仕上がることになる. ディスク状工作 物の端面を円筒プランジ研削した場合も同様である. ま た, 図7に示す板状工作物の曲げ変形については, 前 回のレクチャーで紹介したとおりで, 仕上面の平面度を 著しく悪化させる. これらの影響を抑制するには, 努め て切れ味の良い砥石を用い, 切込みを小さくするととも に, 研削液を適切に供給する必要がある.

一方,平面プランジ研削において砥石が工作物の 端部を通過するとき,砥石と工作物の接触長さが変化 するから垂直研削抵抗が急変し,図8に示すようなダレ が砥石の入口側と出口側に発生する.特に出口側でダ レが大きくなるのは,垂直研削抵抗が急に無くなったと き,砥石が下方にオーバシュートするためである.この ようなダレによる平面度の低下を防ぐには,剛性の高い 研削盤に結合度が高く,切れ味の良い砥石を適用して, ごく微細な切込みで研削する必要がある.

なお円筒トラバース研削では、砥石が工作物端を通 り抜けるときにダレが発生して、円筒度が低下すること が知られている.これを防ぐには、工作物の端部を砥石 が通り抜ける前にトラバース方向を反転させる必要があ る.反転のタイミングは、砥石と工作物の接触幅が砥石 幅の 2/3 程度になったときが良いとされている.

一方,筆者らは研削に伴う工作物表層の塑性流動 がその自由端近傍で拡大して,研削バリが発生・成長 することを見出した.図9にバリの一例を示す.図(a)で は,切れ刃は右方向に切削しており,横バリ(手前側)と 出ロバリ(右側)が生じている.図(b)では,切れ刃は右 手前から進入しており,端部に入ロバリ(いわゆるポア ソンバリ)が生じている.バリは部品の機能・性能に悪影 響を及ぼすばかりでなく,工作物端部の平面度も悪化 させる.バリの原因は,工作物表層の塑性流動である

図 7 両端中央を支持した矩形工作物 の仕上面形状(A80M6V, S45C 焼入れ 材,工作物高さ*H*:20mm,長さ*L*:80mm, 幅*B*:8mm,*V*=1800m/min)

図 8 工作物の両端部を砥石が通過するときに発 生するダレ(湿式ワンパス研削, WA120K8V, S45C 焼入れ材, t=15µm, V=1260m/min, v= 19m/min)

(a) 横バリと出口バリ(b) 入口バリ図 9 工作物の外周部に発生するバリ(S45C 生材)

から、これを抑制するには、切れ味の良い微粒砥石を 用い、ごく微細な切込みで研削する必要があるが、工 作物表層の塑性流動を完全に無くすことはできない.

6. おわりに

仕上面の品質と形状・寸法精度をさらに向上させるに は、幾何学的な砥石と工作物の作動条件を改善するだ けでは不十分であり、研削盤の剛性と運動精度を極限 まで向上させるとともに、砥粒切れ刃の密度と切削性能 を格段に高める必要がある.これらを追求したのが超精 密研削技術であるが、これについては追って触れる.

7. 参考文献

1) 中島, 岡村, 木下:精密機械, 40, 3, (1974)256.